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Before operating on the matrix [A] -1, the r, vector (in 
the ijk system), which defines the positions of the nth 
structural unit, should be added to the (xryrzr) [T] 
vector. So that the final formula is 

(xpVyeVz~,F)= {(XrYrZ r) [T] + (r.xr.yr.~)} [Al-k 
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Abstract 

A coincidence-site-lattice (CSL) model is applied to the 
4H-type layer stacking structure of Mg(Cu,A1) 2 alloys 
of the Laves phase, in order to analyse the structure of 
densely packed plane (DPP) boundaries which are 
observed by high-resolution electron microscopy 
(HREM). In this analysis 'lattice point' is used in a wide 
sense, including all the origins of the repeating unit in 
every layer. Owing to this extension, extra coincidence 
sites of lattice points (CSL-points) occur in the 
interpenetrating lattices and produce a characteristic 
pattern which is called a CSL-pattern in this paper. The 
CSL-pattern gives a satisfactory model for the bound- 
ary structure of layer stacking structures such as the 
Laves phase. Basis vectors of the displacement-shift- 
complete (DSC) lattice obtained here are smaller than 
those of the usual DSC-lattice and explain well the 
Burgers vectors of grain boundary dislocations 
(GBD's). Step vectors and step heights associated with 
the GBD's are also discussed in detail for the 
DPP-boundary. 

1. Introduction 

It has been verified by HREM that the CSL-model is 
useful for investigations of repeating structures of grain 
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boundaries (Ichinose & Ishida, 1981; d'Anterroches & 
Bourret, 1984). Since most layer stacking structures 
have unit cells of considerable size in the stacking 
direction, CSL-points are sparse in interpenetrating 
lattices and give limited information about the perio- 
dicity of the boundary structure with a long period. In 
order to obtain more information from interpenetrating 
lattices, we adopt all the origins of the repeating unit in 
every layer as 'lattice points' when drawing the 
interpenetrating lattices. This extension of 'lattice point' 
is applied to the 4H structure of the Laves phase to 
analyse the boundary structure. 

The Laves phase is one of the intermetallic com- 
pounds having tetrahedrally close-packed structures. 
But the crystal structure of the Laves phase is simply 
understood to be a layer stacking structure of basal 
planes (Komura, 1962), where one layer is composed of 
four densely packed atomic planes and is called a 
fundamental layer of the Laves phase. For example, 
three basic structures of the Laves phase, MgZn 2- 
(C14)-type (Friauf, 1927a), MgCu2(C15)-type (Friauf, 
1927b) and MgNi2(C36)-type (Laves & Witte, 1935), 
are illustrated in Fig. 1, where each drawing is divided 
into two, three or four fundamental layers by dotted 
lines. In a unit cell of the C14 structure two funda- 
mental layers stack similar to the h.c.p, layer sequence, 
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so this structure is called 2H. In C15 and C36, the 
fundamental layers stack similar to the f.c.c, and 
d.h.c.p, layer sequences so these are called 3C and 4H, 
respectively. Since the fundamental layers have almost 
the same atomic configuration except for relative shifts 
in basal plane, all the origins in the fundamental layers 
are adopted as lattice points in deriving a CSL. 

Recently, linear defects at the interfaces between two 
different stacking variants and several types of dis- 
locations in Mg(Cu,Zn) 2 were investigated by HREM 
(Kitano, Komura, Kajiwara & Watanabe, 1980; 
Takeda, Kitano & Komura, 1983; Kitano, Takata & 
Komura, 1986). Some symmetric grain boundaries 
were also observed in the same system and it was found 
that the rotation angle between two adjoining crystals 
depends upon the type of stacking variants (M. Takata, 
Y. Kitano, S. Takeda & Y. Komura, in preparation). In 
an alloy system of Mg(Cu,AI) 2, tilt boundaries having a 
rotation of 70.5 ° around [1101 of the hexagonal cell, 
which is denoted by 70.5°/[110], are frequently found. 
The angle 70.5 ° is equal to the angle between two faces 
of a tetrahedron formed by small atoms in the 
Laves-phase structure. From HREM observation, 
boundaries are found to be parallel to the basal plane of 
one of two crystals. Therefore, these will be called 
densely packed plane (DPP) boundaries in this paper. 

For extended CSL-models, an elegant method has 
been developed on the basis of group theory by Pond & 
Bollmann (1979) and Pond & Vlachavas (1983). In the 
present article an example which is more geometrically 
intuitive and more practical will be demonstrated. 

In this study, the CSL-model based on the extension 
of the meaning of the lattice point is applied to the 
DPP-boundary of the 4H layer stacking structure. 
This extension gives a characteristic pattern of CSL- 
points which enables us to investigate a detailed 
structure at the boundary. In addition, the present 

o Mg 
• S m a l l  a t o m  

C14 C15 C36 

MgZn2 MgCu2 MgNi2 
Fig. 1. Three basic structures of the Laves phase. Open circles: Mg 

atoms; full circles: smaller atoms (Zn, Cu or Ni). Unit cells are 
divided into two, three and four fundamental layers by dotted 
lines for MgZn 2, MgCu2 and MgNi, structures, respectively. 

analysis predicts a new type of Burgers vector for a 
GBD. Similar boundaries between two crystallites of 
2H structure as well as between two different layer 
stacking structures were discussed in separate papers 
(Takata, Kitano & Komura, 1986; Kitano, Takata & 
Komura, 1989). 

2. Experimental procedure 

Alloy specimens Mg(CUl_xAlx)2 with x = 0.465 were 
prepared by melting suitable amounts of pure Mg and 
mother alloys of Cu-AI  together with an appropriate 
amount of Cu in an argon-filled induction furnace. The 
metals used here were 99.9% grade. The melt was 
vigorously stirred and cast into a cylindrical graphite 
mold. Ingots were sliced into discs 0.2 mm thick, and 
the discs were electrolytically polished in a mixture 
of HNO 3 and CH3OH. Finally Ar-ion thinning was 
employed. The specimens were examined under a JEM 
200CS electron microscope operated at 200 kV. With a 
double-tilting goniometer of a side-entry type, the [ 110] 
direction was set exactly parallel to the incident beam. 
The coefficients of the spherical and chromatic aber- 
ration of the objective lens were both 1.9 mm. Images 
were taken after inserting an objective aperture of 
radius 1/2.5 A-~ at the centre of the hlil net plane. 

3. Crystal structure and image contrast of the 4/-/ 
Laves phase 

As is shown in Fig. 1, the crystal structure of the 4H 
Laves phase (C36 type) is described as an.. ~1BA C... layer 
sequence which is represented similarly to the d.h.c.p. 
structure. The crystal structure was originally analysed 
by Laves & Witte (1935), and details of the atomic 
arrangements have been discussed in connection with a 
stacking fault (Komura, 1962; Kitano, Takata & 
Komura, 1986). HREM work on the Laves phase has 
been performed by Kitano, Komura, Kajiwara & 
Watanabe (1980) and a correspondence between image 
contrast and crystal structure has been discovered. 

A structure image of the 4H structure projected in 
the I110] direction is presented in Fig. 2. A projection 
of the structure is inserted in the structure image. In this 
projection, large open circles correspond to columns of 
Mg atoms, and small open circles and dots to columns 
of AI or Cu atoms. Atoms connected by full lines lie on 
one plane and atoms connected by dotted lines on 
the other. These two types of planes are alternately 
stacked in the projection direction with dotted atoms 
placed in between. So, the density of atoms of a dot 
inside a pentagon is twice that of small or large open 
circles. 

From the HREM image of Fig. 2 it is easily 
recognized that the rows of bright dots along the l i l0 ]  
direction stack in the c direction with a shift of ½17101 
or -½17101 in the same way as the stacking sequence 
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. . .ABAC. . .  of the d.h.c.p, structure. Therefore, it is 
concluded that only the 'lattice points' in the wide sense 
which is used throughout this paper are visible in the 
structure image. 

It is confirmed by image calculations of the multislice 
method that a bright dot in the structure image 
corresponds to an atomic column with the highest 
density which is indicated by dots in the projection 
(Takeda, Kitano & Komura, 1983). The structure 
image, the projection of the crystal structure and the 
calculated image contrast are compared in Fig. 2. The 
calculated image is obtained for a crystal thickness of 
100A, and for a defocus value o f - 8 0 0 A  which is nearly 
equal to the optimum defocus value. It is verified that 
the correspondence between image contrast and crystal 
structure is maintained over wide ranges of defocus and 
crystal thickness. The stacking sequence is easily coded 
from the structure images. The calculation was carried 
out by a computer program for the multislice method 
produced by Takeda (1983). 

4. CSL-points and CSL-pattern 

As mentioned above, the crystal structure of the Laves 
phase is described as a layer structure. In drawing 
interpenetrating lattices we will take all the origins in 
every layer as 'lattice points'. The interpenetrating 
lattices related by a 70.5 ° rotation about [110] 
are given in Fig. 3. In Figs. 3 and 4 (discussed below) 

Fig. 2. Structure image of the 4H Laves phase (C36) projected along 
[110]. A projection of the structure and a calculated image 
contrast are inserted. The rows of the bright dots along the [110] 
direction stack in the © direction in the same way as for the 
d.h.c.p, structure. [ I nm ---- 10 A.] 

filled circles and open circles represent 'lattice points' of 
crystal I and crystal II, respectively, and circles with a 
dot represent CSL-points. The size of the circles 
represents a difference in atomic position perpendicular 
to the plane of the figure: lattice points in the plane of 
the figure are shown by large circles but those above or 
below by small circles. 

In Fig. 3, projections of the unit cells of two 4H 
crystals are given by rectangles. Eight 'lattice points' 
are included in each rectangle. The rhombus RSTU of 
dotted lines in Fig. 3 is a periodic unit in the 
interpenetrating lattices and has the same size as that 
of the CSL usually used. As easily seen in Fig. 3, 
sixteen CSL-points in the rhombus R S T U  are found 
and they show a characteristic pattern which is called a 
CSL-pattern in this paper. The size of the rhombus 
would predict the periodicity of the boundary structure 
and the CSL-pattern would give detailed information 
within one period. The CSL-pattern varies with respect 
to the stacking sequence of the layer structure. 

The lattice parameters of a hexagonal cell for the 
4H-type Mg(Cu,AI) 2 Laves phase are ao=-lal--  
5 . 1 1 A  and c o - l e l / 4 = 4 . 1 7 A  (Komura, 1962). 
Thus, the axial ratio, Co/ao, becomes equal to a 
particular value, V'(8/3)/2 =0 .816 ,  which is half the 
axial ratio of the ideal h.c.p, structure. In drawing the 
CSL-pattern we use this ideal value. 

5. DSC-lattiee for the 4H-type layer structure 

A DSC-lattice is defined as the coarsest lattice which 
contains both crystal lattices as sublattices (BoUmann, 
1970). The DSC-lattice in the plane of Fig. 3 is shown 
in Fig. 4. From this drawing it is found that the basis 
vectors of the DSC-lattice are 

b, = (--4a + 4b + 3e)/36 = []431/36 = [ I l l l / 9  (1) 

b2 = ( S a -  8b + 3e)/36 = [8931/36 = [22~1/9, (2) 

referring to crystal I whose lattice is represented by 
filled circles. Here a, b and e are the unit-cell vectors of 
the hexagonal cell of the 4H structure. The vectors b~ 
and b 2 are equal to the basis vectors of the DSC-lattice 
for the 2H structure (Takata et al., 1986). The reason 
why these vectors are equal to each other is as follows: 
Since each fundamental layer stacks in the e direction 
with a shift of [-1101/3 or - [ I10 ] /3 ,  the translation 
vector t ! or t 2 between two successive layers is 
represented by: 

tl = ~[IlO1 + ~[OOl] = ~[II~l 
o r  

t2= ~[1101 + ~[0011 = ][lI]]. 
From equations (1) and (2) these equations may be 
rewritten 

tl = 3bl (3) 

t 2 = b I + 2b 2. (4) 
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It is concluded that the vectors t~ and t 2 which are the 
possible translation vectors from one layer to the next 
are represented by linear combinations of the DSC- 
lattice vectors b~ and b2. Since any type of regular 
structure or any type of stacking faulted structure is 
represented by a sequence of translation vectors, t~ or 
t~, all the lattice points can be represented by a linear 
combination of b~ and br From the definition of the 
DSC-lattice the vectors b~ and b~ would be the basis 
vectors even if any stacking variants were considered or 

any changes in stacking sequence occurred in a regular 
structure. 

6. Experimental results 

By HREM observation, 70.5°/[110] boundaries are 
found from place to place in this alloy. A parameter 
which refers to a reciprocal density of coincidence 
lattice points is equal to ~9 .  This value is the minimum 
among the boundaries generated by rotation about the 
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Fig. 3. Interpenetrating lattices for two 
4H layer structures with a 70.5 ° 
rotation about [110]. All the origins 
of the repeat unit in every layer are 
adopted as 'lattice points'. Projec- 
tions of the unit cells of two 4H 
crystals are shown by rectangles. 
Filled circles belong to crystal I, 
open circles to crystal II. Circles 
with a dot represent the CSL-points. 
A characteristic pattern of the CSL- 
points is obtained and is called a 
CSL-pattern. The rhombus R S T U  
represents a unit cell in the inter- 
penetrating lattices and the vectors 
TS and TU are the basis vectors of 
the CSL. 
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- 3 b ]  + b 2. 
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[110] axis• Boundary planes are frequently found to be 
parallel to the DPP (i.e. basal planes) of one of the 
component crystals. In this paper, a crystal whose basal 
plane is parallel to the boundary is named crystal I and 
the other crystal II. One of the lattice images of the 
DPP-boundary of )-'9 in the 4 H  structure is shown in 
Fig. 5. In this image, the boundary is parallel to the 
(001) DPP  of crystal I and the rotation angle of the 
two crystals is 70.5 °. A characteristic repetition is 
observed along the boundary.  But the periodicity is 
broken at a boundary step C at the centre of the image. 
A stacking fault (SF) shown by a horizontal arrow 
terminates at the boundary step C. 

Except for the boundary step C the boundary is 
made up of a continuous alternation of clear and 
disturbed regions of the structure image. In the clear 
regions the [ i l 0 ]  arrays of bright dots of crystal II 
connect smoothly with bright dots of crystal I, but in 
the disturbed regions images are vague between the two 
crystals. We call the former region a boundary bridge, 
and the latter a perturbed region. 

Fundamental layers in crystal II which reach 
boundary bridges are indicated by arrows parallel to the 

[I10]H direction towards the top of Fig. 5 (similarly in 
Figs. 6 and 7 discussed below). A boundary structure is 
represented by a series of numerals which indicate the 
numbers of the fundamental layers in crystal II 
alternately belonging to the bridges and the perturbed 
regions. For example, in Fig. 5 the boundary structure 
is described from left to right as ...[41114131513- 
[411141314111413..., where numerals in brackets show 
the numbers of the fundamental layers in crystal II 
which meet the perturbed region at the boundary and 
numerals not in brackets show the numbers of the 
fundamental layers in crystal II which reach the 
boundary bridge. The periodic unit of the boundary 
structure is found to be [4111413, but a sequence [5]3 is 
inserted around the boundary step C, which will be 
discussed later in detail. 

7. Discussion 

In this section we will use the CSL-pattern proposed in 
§4 to analyse the results of the HREM observation. It is 
reasonably assumed that boundaries have a tendency to 
pass through as many CSL-points as possible. 
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Fig. 5. Structure image of the DPP- 
boundary in the 4H structure. A boun- 
dary step C is seen at the centre of 
photograph. An SF indicated by an 
arrow at the left side of the micrograph 
terminates at the step. [ 1 nm -- 10 ,~,.] 
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Fig. 6. Primitive boundary model based on 
Fig. 3. The stacking sequence of crystal 
I is represented by a zigzag line and an 
SF is seen at the left side of the step. 
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7.1. Model of atomic configuration at the boundao, 

The structure image of the tilt boundary shown in 
Fig. 5 is recognized to possess the characteristic feature 
of the CSL-pattern given in Fig. 3. Since the bright dots 
in the image correspond to the 'lattice points' as 
described above, we can first propose a primitive 
boundary model which is shown in Fig. 6, where we 
only draw 'lattice points'. As indicated by a dotted line 
in the figure, the boundary passes through clusters of 
the CSL-points along the shortest path. This suggests 
that not only the periodicity but also the detailed 
structure within a period can be predicted from the 
CSL-pattern. Clusters of the CSL-points regularly 
appear and repeat every twelve layers of crystal II as 
seen in Fig. 6. To interpret the structure image of Fig. 5 
the alternating appearance of clear and perturbed areas 
at the boundary should be compared with the proposed 
model of Fig. 6. 

The atomic configuration at the boundary is con- 
structed using the correspondence between the struc- 
ture image and the crystal structure explained in Fig. 2. 
The result is shown in Fig. 7. It is reasonable to assume 
that in the boundary bridge the atomic configuration is 
not affected so much and almost all the atomic sites are 
shared between the two crystals. The associated 
rigid-body translation should then be equal to zero. On 
the other hand, the atomic configuration in the 
perturbed areas cannot be deduced from the structure 
image or the CSL-pattern. Thus, no atoms are drawn in 
the perturbed areas in Fig. 7. 

7.2. DSC-dislocation due to a boundary step with a 
stacking fault (SF) 

As described before, a boundary step is seen at the 
centre indicated by C in Fig. 5. The boundary step 
occurs at a terminal of an SF in crystal I and the height 
of the step is found to be equal to a thickness of three 
fundamental layers, 3c o - 31 e I/4 -- 12.51/k, and the 
periodicity in the boundary structure is broken. 

The boundary structure around C is represented by 
the series ... [4] 1141315131411... instead of the regular 
series [4] 114]3. The irregular part [5]3 consists of eight 
layers of crystal II and is indicated by D and the 
neighbouring three arrows in Figs. 5 and 6. From the 
structure image it is known that due to the step the 

periodic boundary structure shifts along the boundary 
by -(4+-~)[T10] +][001] of crystal I, where the 
former component - ( 4  + ~-)[T10] corresponds to [5]3 
and the latter ][001] to the step height. Except for this 
area the boundary structure [4111413 remains un- 
changed on the left and right sides of the boundary step 
C. If a model of strain-free crystals were drawn beyond 
the step referring to the right side of structure image, a 
gap would appear between two crystals in the left area. 
This situation is shown in two dotted lines in Fig. 6. 

This suggests the existence of a GBD, a Burgers 
vector of which is indicated by the arrows near the gap 
in Fig. 6. The Burgers vector is equal to bz which is 
predicted from the DSC-lattice based on the CSL- 
pattern presented in the previous section. Without the 
extension of the meaning of the lattice point, this type of 
Burgers vector would not be predicted for a GBD. In an 
HREM image of the 2H structure, a GBD has also 
been found at a step, and the Burgers vector is shown to 
be b~ by the same method (Takata, Kitano & Komura, 
1986). Therefore, we conclude that the GBD's ob- 
served here are so-called DSC-dislocations. 

7.3. Step height of  densely packed plane (DPP) 
boundaries 

A method for the determination of the boundary step 
height by construction has been given by King & Smith 
(1980), and it has been shown that a convenient 
parameter associated with a GBD is a step vector s, 
which is defined as a shift in the CSL-pattern caused by 
the passage of a GBD. It is the purpose of this section 
to derive formulae for the step vector as a function of a 
Burgers vector of a GBD, and to apply these formulae 
to the calculation of a boundary step height accom- 
panied by an SF. The formulae of the step vectors for 
the 2H structure are also given in this section. 

Part of the DSC-lattice of Fig. 4 is magnified and 
shown in Fig. 8. In this figure, filled circles belong to 
crystal I and open ones to crystal II. In the case of ~9  
(70.5°/[110]), the basis vectors b~ and b z of the 
DSC-lattice are given by equations (1) and (2), 
respectively. If it is supposed that crystal II is kept 
stationary while crystal I is displaced by b~ or b2, a step 
vector s(b~) or s(bz) is defined as the shortest vector that 
joins an 'old' CSL-point to a 'new' one; i.e. it runs from 

Fig. 7. Model of the atomic configuration 
on the DPP-boundary in the 4H 
structure. 
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a lattice point which was coincident before displace- 
ment to one which is coincident after it. The reference 
lattice for all the vectors used hereafter will be the 
crystal lattice of crystal I. 

The primitive step vectors s(b 1) and s(bz) are shown 
in Fig. 8 and are given in Table 1 for the 4H structure. 
In Table 1 all the vectors are written in two different 
ways; one is represented by the basis vectors b], b 2, of 
the DSC-lattice and the other by the crystallographic 
vectors of crystal I. In the latter case, three orthogonal 
vectors [110], [i10], [001] of the hexagonal system are 
used. The direction [110] is perpendicular to the plane 
of the micrograph of the HREM image and is parallel 
to the rotation axis of the two crystals. Both axes [110] 
and [001] lie in the plane of the micrograph. The 
fundamental layer of crystal I is parallel to [ l l0 l  and is 
perpendicular to [001 ]. The CSL-vectors in Table 1 are 
defined as the translation vectors of the CSL which are 
equal to the vectors TS and TU in Fig. 3. In Table 1 
Zcs L is the third basis vector of the CSL and has a 
component along the rotation axis [110], i.e. Zcs L is 
perpendicular to the plane of Fig. 8. As is shown in 
Table 1, the primitive step vector s(b~) or s(b2) 
possesses a [ 110] component and is equal to ½[ 110]. 

Supposing a GBD with a Burgers vector mb, + nb2 
(m, n are integers) passes through the boundary or any 
type of such displacement occurs in crystal I, a shift of 
the CSL-pattern represented by s(mb~ + nb 2) occurs. 
From the linearity of the step vector, s(mb~ + nb2) is 
divided into the two following terms: 

s(mb~ + n b  2) = ms(b~) + ns(b2). (5) 

Using the equations in Table 1, we obtain 

s(mbl +nb2) = ~m[ i l0 ] -m[001]  + ~n[T10] + n[001l 

+ ½(m + n)[1101 

= (~m+½n)[il0] + ( -m+n) [001]  

+ ½(m + n)[110]. (6) 
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primitive step vectors of the CSL-pattern, s(bt) and s(b2).  These 
steps are caused by the passage of GBD's with Burgers vectors 
b~ and b 2. 

Table 1. Basis vectors of the DSC-lattiee and of the 
CSL, and step vectors of the CSL-pattern for the 4H 

and 2H structures C 9 ,  70.5°/[ 110]) 

4H structure 
DSC-vectors 
b,-- ,}l-f 1]l 
b2 = k122~1 

CSL-vectors 
TS = 18(b I + b2) 

- - 2 [T 101  + 310011 
T U =  18(b l - b  2) 

= 6 [ I 1 0 l  
Zcs e = 11101 

Step vectors of the CSL-pattern 
s(b t )  = - ~ ( 2 3 b  2 + b I) + ½Zcs L 

= ~[I101-1001] + ½[1101 
1 s(b2) = ½(25b I - b2) + -~Z(.sL 

= ~11101 + 10011 + ½11101 

2 H  s t r u c t u r e  

= 1 3 bl ~['i'l~12n 
= 1 3 b 2 ~122~1z, 

TS = 9(b  I + b 2) 
-- -II101 + 3100112n 

TU = 9(b I - b 2) 
= 3[IlOl 

Zest. = [ 110] 

s (b , )  = ½(13b 2 - b,)  + ½Zcst 
- -~[ l lOl  + [O01]z~ + ½11101 

s(b2) = _ ½ ( l l b l  + b2 ) + l ~ Z c s t  

= - ½ 1 1 1 0 l -  100112n + ½[1101 

The first term of the right-hand side is related to a shift 
of the boundary structure along the boundary plane, 
and the second is related to the boundary step height. In 
this case, the third term is of no importance, because an 
identical CSL-pattern is recreated by this displacement. 
So we hereafter ignore the third term. In this way we 
can determine the shift of the periodic boundary 
structure along the DPP-boundary as well as the 
boundary step height. In order to obtain the real step 
vectors in crystal I, the basis vectors of the CSL (Table 
1) must be added to or subtracted from equation (6). 

The boundary step at C in Fig. 5 is caused by an SF 
together with a GBD. A displacement of crystal I due 
to the SF is found to be - h  = - 3 b ~  [equation (3)] from 
the HREM image. As shown in Fig. 6 the Burgers 
vector of the GBD is b 2. Therefore, the total displace- 
ment vector of crystal I is -3b~ + b 2 relative to crystal 
II. Substituting this vector into equation (6) we obtain 
the total step vector to be 

s ( -3b  I + b 2) = - - 3 s ( b l )  + s(b 2) 

= - 6 [ T 1 0 ]  + 41001] 

= - 4 1 i 1 0 ]  + 1001] + / - 2 [ i 1 0 ]  

+ 310011}. (7) 

If we subtract a basis vector (TS in Fig. 3) of the CSL 
which is equal to the sum of the third and fourth terms 
of equation (7), we obtain 

s( -3bl  + b2 )= -4 [110 ]  + [001 ]. (8) 

Equation (8) corresponds to the step vector of the 
CSL-pattern from I to F in Fig. 4 where a lattice point 1 
is the centre of the characteristic 3 × 3 cluster of 
CSL-points and F is the centre of the 3 × 3 cluster 
which will become CSL-points. We can find the same 
cluster at G if we shift crystal I by -3b~ + b 2 from F. 
Since -3b]  comes from the SF in crystal I, the real step 
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vector s' results from adding a vector -3b~ to 
s(-3b~ + b 2) of equation (8), then 

s' = s ( - 3 b  I + b 2) - 3bl 

= ( - 4  +k)IT101 + I[0011. (9) 

From equation (9) we have calculated that the shift 
vector of the boundary structure along the boundary 
plane is ( - 4  + 3) [ i l 0 ] ,  and that the step height is 
]1001]. These two vectors are the same as those 
obtained from the structure image in Fig. 5. 

For the 2H structure, the Burgers vector of a GBD 
was reported to be b ,  and the step height to be 100112, 
(Takata, Kitano & Komura,  1986). The basis vectors 
of  the DSC-lattice and of the CSL as well as the step 
vectors of the CSL-pattern are also given in Table 1. 
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Structure of~t-MnAl 4 with Composition Close to that of Quasierystal Phases 

BY CLARA BRINK SHOEMAKER, DOUGLAS A. KESZLER AND DAVID P. SHOEMAKER 

Department  o f  Chemistry, Oregon S ta te  University, Corvallis, Oregon 97331, USA 

(Received 10 June 1988; accepted 23 A ugust 1988) 

A b s t r a c t  

MnA14.12 , M r / 1 0 0 = 3 2 . 4 3 ,  P63/mmc, a =  19.98(1),  
c = 24.673 (4) A, V = 8525 (9) A 3, atoms/cell = 563 
(average), D x = 3.556 (2) g c m  -3, 2(Mo K~) = 
0.71069 A, / l =  53.05 cm -~, F ( 0 0 0 ) =  8639, T =  
296 K, final R = 0.053 for 1397 reflections with I > 2o. 
The structure is of interest with relation to quasicrystal 
phases in the Mn-AI system. Parts of the structure 
resemble that of cp-Mn3Ali0. Neither complete Mackay 
icosahedra (MI), nor 105-atom Bergman clusters are 
present, but different fragments of MI occur. Most 
interstices are octahedral, tetrahedral, or trigonal 
prismatic. The Mn atoms have zero to two Mn atoms in 
the first coordination shell and four to twelve Mn atoms 
in the second shell. Of  the Mn atoms 108 have 
icosahedral coordination, two have CN9. Of the 453 Al 
atoms 6.6% have icosahedral coordination, 35.8% are 
coordinated by a pentagonal prism of Al atoms with 
two Mn atoms at the poles, 26.5% have CN13, 25.6% 
have irregular C N I 2  arrangements formed by parts of 
icosahedra and pentagonal prisms, and the remaining 
5.5% have other coordinations varying between 11 and 

0108-7681/89/010013-08503.00 

15. Two A1 positions are partly occupied. The distance 
ranges are M n - M n  2.678-2.758,  M n - A I  2-359-  
2.874, A1-AI 2 .527-3 .166  A (e.s.d. range: 0 .002-  
0.014 A). There are almost linear rows of atoms, which 
center icosahedra or pentagonal prisms. Approximate 
icosahedral symmetry is propagated in the direction of 
these rows. 

I n t r o d u c t i o n  

A phase of assumed approximate composition MnAI 6, 
exhibiting non-crystallographic (icosahedral) sym- 
metry in its electron diffraction pattern, was discovered 
by Shechtman, Blech, Gratias & Cahn (1984). This 
phase was formed by extremely rapid cooling from a 
melt. Subsequently, more non-equilibrium phases have 
been discovered that exhibit orientational symmetry, 
but lack periodicity in one or more dimensions; phases 
of this kind have been called quasicrystalline. Possibly, 
clues to the structure of a quasicrystalline phase may be 
provided by the structure of an equilibrium crystalline 
phase of similar composition. The crystal structure of 
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